go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/H050353/1
Title Turbo-Discharging: Reducing CO2 Emissions from Current and Future Vehicles
Status Completed
Energy Categories Energy Efficiency(Transport) 50%;
Fossil Fuels: Oil Gas and Coal(Oil and Gas, Oil and gas combustion) 50%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields ENGINEERING AND TECHNOLOGY (Mechanical, Aeronautical and Manufacturing Engineering) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Professor CP Garner
No email address given
Sch of Mechanical and Manufacturing Eng
Loughborough University
Award Type Standard
Funding Source EPSRC
Start Date 05 July 2010
End Date 04 January 2012
Duration 18 months
Total Grant Value £121,031
Industrial Sectors Transport Systems and Vehicles
Region East Midlands
Programme Energy : Energy
 
Investigators Principal Investigator Professor CP Garner , Sch of Mechanical and Manufacturing Eng, Loughborough University (100.000%)
Web Site
Objectives
Abstract Turbo-Discharging is a fundamentally new approach to using internal combustion (IC) engine air systems to improve fuel economy, reduce engine CO2 emissions and simultaneously increase engine torque. Using a novel divided exhaust flow arrangement, the blow-down flow and the associated energy usually lost as part of the exhaust flow is recovered by a turbine. During the main displacement flow the turbine is by-passed and the crankshaft does not have to do any work exhausting the burnt gases through the turbine. The result is the recovery of the blowdown energy without negatively impacting the engine crankshaft torque. This energy is then innovatively used to depressurise the exhaust system which generates extra crankshaft torque during the exhaust stroke giving a primary torque increase and CO2 emission reduction.Secondary benefits include increased energy availability from the blowdown pulse and potentially improved low speed torque (through increased pressure drop across the turbine). There will be less hot exhaust gas residuals within the cylinder which will extend the knock limit of turbocharged spark ignition engines allowing further downsizing than is currently possible.Importantly, the effect on the combustion system is negligible allowing the Turbo-Discharging approach to be used with all current and future IC engines without significant redesign. The impact on CO2 emissions could therefore be much larger than costly technologies offering larger CO2 reductions in only small niche markets.Turbo-Discharging requires the addition of a turbine and compressor (as used in a conventional turbocharging system) and does not require complexities such as wastegating or variable geometry turbines. The cost is therefore small, placing the technology in a very competitive position compared with many other CO2 reducing technologies. With engine manufacturers requiring combined technologies to meet future CO2 emission targets, this technology will be very attractive to industry. Initial contact with industrial has shown that experimental demonstration of this technology is needed before they will invest. This project will experimentally study, develop and demonstrate Turbo-Discharging as a feasible, cost effective and novel approach to reducing IC engine CO2 emissions, ultimately leading to industrial collaboration and implementation of Turbo-Discharging on-vehicle
Publications (none)
Final Report (none)
Added to Database 10/01/11